Infopost | 2007.10.15

(May need to click to play)

I'm simulating a collective of independent agents. Each is controlled by a set of neural networks that determine the agent's action. The networks train themselves based on positive and negative action outcomes. Currently they eat, swarm, and reproduce. Above you can see them moving as a collective to consume food (green). Their population (plotted below) fluctuates pretty steadily and you can see the group expand and contract based on environmental stimuli. It's pretty processor-intensive, so I've had to set the environment to support only a few hundred organisms.



The algorithms are still pretty basic, development goals include:




Comments

This is what you do at work? Now I know who to come to for all the big questions in LIFE. We need to have some sort of mental olympics between a group of us to determine once and for all, the KING and the court jester.

Chris

Au contraire, this is about creating life, work is about destroying it.


Are you calling my wife a tramp? She is going to cut you.



2007.10.15

Could you say that into my lapel pin?

2007.10.21

The rise and fall of Sauritch



Related / internal

Some posts from this site with similar content.

Post
2008.06.11

Neural networks

I was chatting with Jon about the application of neural networks to stock trading, which is basically a perfect example for explaining the science. It went something like a'this:
Post
2008.06.11

Picking ponies

Naturally I will be indulging my curiosity as to the effectiveness of a good stock market prediction network. It would be a shame not to put money where my mouth is.
Post
2022.08.03

Keras cheat sheet

Examples of keras merging layers, convolutional layers, and activation functions in L, RGB, HSV, and YCbCr.

Related / external

Risky click advisory: these links are produced algorithmically from a crawl of the subsurface web (and some select mainstream web). I haven't personally looked at them or checked them for quality, decency, or sanity. None of these links are promoted, sponsored, or affiliated with this site. For more information, see this post.

Has a preview image link and yet 404 :/
www.aft3r.us

- - after us

syncedreview.com

Google Brain Introduces Symbolic Programming + PyGlove Library to Reformulate AutoML | Google Brain Introduces Symbolic Progr...

A recent study by the Google Brain Team proposes a new way of programming automated machine learning (AutoML) based on symbolic programming.A recent study by the Google Brain Team proposes a new way of programming automated machine learning (AutoML) based on symbolic programming. The researchers have also introduced PyGlove, a Python library that demonstrates the new paradigm's promising results. Neural network architectures are becoming increasingly complex, and finding the right one...
Has a preview image link and yet 404 :/
blog.otoro.net

Collective Intelligence for Deep Learning: A Survey of Recent Developments | ???

We survey ideas from complex systems such as swarm intelligence, self-organization, and emergent behavior that are gaining traction in ML. (Figure: Emergence...

Created 2024.10 from an index of 434,126 pages.