|
Infopost | 2021.01.02
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Type Cost Proceeds P/L P/L % Notes -------------------------------------------------------------------------- Stocks: 67,731.58 -> 70,417.55 = 2,685.97 3.9% Options: 54,759.95 -> 56,314.35 = 1,554.40 2.8% ETFs: 105,840.48 -> 100,117.95 = -5,722.53 -5.4% FU Barclays Bonds: 83,766.56 -> 93,714.51 = 9,947.95 11.8% Doesn't include divs Mutuals: [All long term]

![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |


_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 192, 192, 16) 800 _________________________________________________________________ gaussian_noise (GaussianNois (None, 192, 192, 16) 0 _________________________________________________________________ dense (Dense) (None, 192, 192, 96) 1632 _________________________________________________________________ dropout (Dropout) (None, 192, 192, 96) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 192, 192, 16) 38416 _________________________________________________________________ dense_1 (Dense) (None, 192, 192, 96) 1632 _________________________________________________________________ dropout_1 (Dropout) (None, 192, 192, 96) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 192, 192, 16) 13840 _________________________________________________________________ batch_normalization (BatchNo (None, 192, 192, 16) 64 _________________________________________________________________ conv2d_3 (Conv2D) (None, 192, 192, 16) 2320 _________________________________________________________________ conv2d_4 (Conv2D) (None, 192, 192, 1) 145 _________________________________________________________________ conv2d_5 (Conv2D) (None, 192, 192, 1) 2 ================================================================= Total params: 58,851 Trainable params: 58,819 Non-trainable params: 32 _________________________________________________________________
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

def file_to_np_array(size, infile, outfile=None, color='HSV', mode='none'):
input_image = Image.open(infile)
if outfile is not None:
output_image = Image.open(outfile)
return image_to_np_array(size, input_image, outimage=output_image,
color=color, mode=mode)
else:
return image_to_np_array(size, input_image, color=color, mode=mode)
def image_to_np_array(size, inimage, outimage=None, color='HSV', mode=
'none'):
if mode == 'none':
if inimage.width != size or inimage.height != size:
print('None mode using image size: ',inimage.width,'x',inimage.
height,' for size length ',size)
raise
i = inimage.convert(color)
if outimage is not None:
if outimage.width != size or outimage.height != size:
print('None mode using image size [truncated]')
raise
o = outimage.convert(color)
else:
o = None
elif mode == 'scale':
print('Scale not yet implemented')
raise
elif mode == 'sample':
if outimage is not None:
if inimage.width != outimage.width or inimage.height !=
outimage.height:
print('Input/output image different size [truncated]')
raise
box = get_random_crop_dimensions(inimage, size, size)
i = inimage.crop(box)
i = i.convert(color)
if outimage is not None:
o = outimage.crop(box)
o = o.convert(color)
else:
o = None
else:
print('Undefined mode: ',mode)
raise
if (o is not None):
return (np.array(i) / 255.0, np.array(o) / 255.0)
else:
return (np.array(i) / 255.0, None)
def np_array_to_image(array, incolor='HSV', outcolor='RGB'):
array = array * 255.0
array = array.astype(np.uint8)
if incolor == 'L':
return Image.fromarray(array[:,:], incolor).convert(outcolor)
else:
return Image.fromarray(array, incolor).convert(outcolor)

| Week |
d'san andreas da bears - Medieval Gridiron - |
Covid-20 - Password is Taco - |
Dominicas - Siren - |
|---|---|---|---|
| 1 |
Danville Isotopes 110.8 - 72.5 W (1-0) |
Black Cat Cowboys 155.66 - 78.36 W (1-0) |
TeamNeverSkipLegDay 136.24 - 107.50 W (1-0) |
| 2 |
Screaming Goat Battering Rams 119.9 - 105.9 W (2-0) |
[Random UTF characters resembling an EQ] 115.50 - 115.74 L (1-1) |
Dem' Arby's Boyz 94.28 - 102.02 L (1-1) |
| 3 |
Nogales Chicle 106.5 - 117.8 L (2-1) |
Circle the Wagons 100.42 - 90.02 W (2-1) |
JoeExotic'sPrisonOil 127.90 - 69.70 W (2-1) |
| 4 |
Britons Longbowmen 122.9 - 105.1 W (3-1) |
Staying at Mahomes 123.28 - 72.90 W (3-1) |
Daaaaaaaang 138.10 - 108.00 W (3-1) |
| 5 |
Toronto Tanto 105.0 - 108.2 L (3-2) |
Robocop's Posse 111.32 - 134.26 L (3-2) |
Alpha Males 86.20 - 76.12 W (4-1) |
| 6 |
Only Those Who Stand 108.2 - 66.7 W (4-2) |
KickAssGreenNinja 65.10 - 84.02 L (3-3) |
SlideCode #Jab 71.60 - 53.32 W (5-1) |
| 7 |
San Francisco Seduction 121.7 - 126.4 L (4-3) |
Ma ma ma my Corona 118.22 - 84.20 W (4-3) |
G's Unit 109.20 - 92.46 W (6-1) |
| 8 |
LA Boiling Hot Tar 116.2 - 59.4 W (5-3) |
Kamaravirus 118.34 - 109.94 W (5-3) |
WeaponX 113.14 - 85.40 W (7-1) |
| 9 |
SD The Rapier 135.0 - 90.8 W (6-3) |
C. UNONEUVE 117.80 - 90.16 W (6-3) |
Chu Fast Chu Furious 128.28 - 59.06 W (8-1) |
| 10 |
West Grove Wankers 72.9 - 122.8 L (6-4) |
Pug Runners 98.90 - 77.46 W (7-3) |
NY Giants LARP 75.24 - 75.06 W (9-1) |
| 11 |
SF Lokovirus 127.9 - 87.1 W (7-4) |
Bravo Zulus 116.34 - 45.50 W (8-3) |
HitMeBradyOneMoTime 107.42 - 89.22 W (10-1) |
| 12 |
Danville Isotopes 154.7 - 98.9 W (8-4) |
Forget the Titans 92.84 - 125.14 L (8-4) |
TeamNeverSkipLegDay 132.78 - 140.84 L (10-2) |
| 13 |
Screaming Goat Battering Rams 136.9 - 84.5 W (9-4) |
[Random UTF characters resembling an EQ] 135.20 - 72.52 W (9-4) |
Dem Arby's Boyz 97.62 - 63.52 W (11-2) |
| P-1 |
Bye 99.2 |
Bye 129.30 |
Bye 94.12 |
| P-2 |
Screaming Goat Battering Rams 112.0 - 125.4 L |
Ma ma ma my Corona 127.42 - 104.46 W |
G's Unit 118.56 - 142.52 L |
| P-3 |
Britons Longbowmen 86.4 - 125.8 L (4th) |
Forget the Titans 114.84 - 115.72 L (2nd) |
TeamNeverSkipLegDay 78.62 - 94.44 L (4th) |
|
|
|
|
|
| ◄ |
2020.12.25
Staying warm by the fireFixing the transformer on a 1970s furnace, PUBG meme strats, and thinking about autoencoders. |
2021.01.03
SwellShots from a few San Diego spots during the recent swell. |
► |
|
2020.12.12
On lockThe covid surge is a good time for video games and fantasy football. |
|
2020.11.29
ModsTweaking the TensorFlow implementation of Neural Style Transfer. |
|
2020.12.06
Edges and cornersTaking the 500mm out for some surf shots. Tweaking neural style transfer. |
|
aimatters.wordpress.com
XOR Revisited: Keras and TensorFlow - On Machine IntelligenceA few weeks ago, it was announced that Keras would be getting official Google support and would become part of the TensorFlow machine learning library. Keras is a collectionof high-level APIs in Python for creating and training neural networks, using either Theano or TensorFlow as the underlying engine. Given my previous posts on implementing an... |
|
coornail.net
Teaching an AI to countNeural networks are a powerful tool in machine learning that can be trained to perform a wide range of tasks, from image classification to natural language processing. In this blog post, well explore how to teach a neural network to add together two numbers. You can also think about this article as a tutorial for tensorflow. |
|
blog.paperspace.com
Image Classification with AttentionFollow this tutorial to learn what attention in deep learning is, and why attention is so important in image classification tasks. We then follow up with a demo on implementing attention from scratch with VGG. |