Infopost | 2021.01.02
|
Type Cost Proceeds P/L P/L % Notes -------------------------------------------------------------------------- Stocks: 67,731.58 -> 70,417.55 = 2,685.97 3.9% Options: 54,759.95 -> 56,314.35 = 1,554.40 2.8% ETFs: 105,840.48 -> 100,117.95 = -5,722.53 -5.4% FU Barclays Bonds: 83,766.56 -> 93,714.51 = 9,947.95 11.8% Doesn't include divs Mutuals: [All long term]
_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 192, 192, 16) 800 _________________________________________________________________ gaussian_noise (GaussianNois (None, 192, 192, 16) 0 _________________________________________________________________ dense (Dense) (None, 192, 192, 96) 1632 _________________________________________________________________ dropout (Dropout) (None, 192, 192, 96) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 192, 192, 16) 38416 _________________________________________________________________ dense_1 (Dense) (None, 192, 192, 96) 1632 _________________________________________________________________ dropout_1 (Dropout) (None, 192, 192, 96) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 192, 192, 16) 13840 _________________________________________________________________ batch_normalization (BatchNo (None, 192, 192, 16) 64 _________________________________________________________________ conv2d_3 (Conv2D) (None, 192, 192, 16) 2320 _________________________________________________________________ conv2d_4 (Conv2D) (None, 192, 192, 1) 145 _________________________________________________________________ conv2d_5 (Conv2D) (None, 192, 192, 1) 2 ================================================================= Total params: 58,851 Trainable params: 58,819 Non-trainable params: 32 _________________________________________________________________
def file_to_np_array(size, infile, outfile=None, color='HSV', mode='none'): input_image = Image.open(infile) if outfile is not None: output_image = Image.open(outfile) return image_to_np_array(size, input_image, outimage=output_image, color=color, mode=mode) else: return image_to_np_array(size, input_image, color=color, mode=mode) def image_to_np_array(size, inimage, outimage=None, color='HSV', mode= 'none'): if mode == 'none': if inimage.width != size or inimage.height != size: print('None mode using image size: ',inimage.width,'x',inimage. height,' for size length ',size) raise i = inimage.convert(color) if outimage is not None: if outimage.width != size or outimage.height != size: print('None mode using image size [truncated]') raise o = outimage.convert(color) else: o = None elif mode == 'scale': print('Scale not yet implemented') raise elif mode == 'sample': if outimage is not None: if inimage.width != outimage.width or inimage.height != outimage.height: print('Input/output image different size [truncated]') raise box = get_random_crop_dimensions(inimage, size, size) i = inimage.crop(box) i = i.convert(color) if outimage is not None: o = outimage.crop(box) o = o.convert(color) else: o = None else: print('Undefined mode: ',mode) raise if (o is not None): return (np.array(i) / 255.0, np.array(o) / 255.0) else: return (np.array(i) / 255.0, None) def np_array_to_image(array, incolor='HSV', outcolor='RGB'): array = array * 255.0 array = array.astype(np.uint8) if incolor == 'L': return Image.fromarray(array[:,:], incolor).convert(outcolor) else: return Image.fromarray(array, incolor).convert(outcolor)
Week |
d'san andreas da bears - Medieval Gridiron - |
Covid-20 - Password is Taco - |
Dominicas - Siren - |
---|---|---|---|
1 |
Danville Isotopes 110.8 - 72.5 W (1-0) |
Black Cat Cowboys 155.66 - 78.36 W (1-0) |
TeamNeverSkipLegDay 136.24 - 107.50 W (1-0) |
2 |
Screaming Goat Battering Rams 119.9 - 105.9 W (2-0) |
[Random UTF characters resembling an EQ] 115.50 - 115.74 L (1-1) |
Dem' Arby's Boyz 94.28 - 102.02 L (1-1) |
3 |
Nogales Chicle 106.5 - 117.8 L (2-1) |
Circle the Wagons 100.42 - 90.02 W (2-1) |
JoeExotic'sPrisonOil 127.90 - 69.70 W (2-1) |
4 |
Britons Longbowmen 122.9 - 105.1 W (3-1) |
Staying at Mahomes 123.28 - 72.90 W (3-1) |
Daaaaaaaang 138.10 - 108.00 W (3-1) |
5 |
Toronto Tanto 105.0 - 108.2 L (3-2) |
Robocop's Posse 111.32 - 134.26 L (3-2) |
Alpha Males 86.20 - 76.12 W (4-1) |
6 |
Only Those Who Stand 108.2 - 66.7 W (4-2) |
KickAssGreenNinja 65.10 - 84.02 L (3-3) |
SlideCode #Jab 71.60 - 53.32 W (5-1) |
7 |
San Francisco Seduction 121.7 - 126.4 L (4-3) |
Ma ma ma my Corona 118.22 - 84.20 W (4-3) |
G's Unit 109.20 - 92.46 W (6-1) |
8 |
LA Boiling Hot Tar 116.2 - 59.4 W (5-3) |
Kamaravirus 118.34 - 109.94 W (5-3) |
WeaponX 113.14 - 85.40 W (7-1) |
9 |
SD The Rapier 135.0 - 90.8 W (6-3) |
C. UNONEUVE 117.80 - 90.16 W (6-3) |
Chu Fast Chu Furious 128.28 - 59.06 W (8-1) |
10 |
West Grove Wankers 72.9 - 122.8 L (6-4) |
Pug Runners 98.90 - 77.46 W (7-3) |
NY Giants LARP 75.24 - 75.06 W (9-1) |
11 |
SF Lokovirus 127.9 - 87.1 W (7-4) |
Bravo Zulus 116.34 - 45.50 W (8-3) |
HitMeBradyOneMoTime 107.42 - 89.22 W (10-1) |
12 |
Danville Isotopes 154.7 - 98.9 W (8-4) |
Forget the Titans 92.84 - 125.14 L (8-4) |
TeamNeverSkipLegDay 132.78 - 140.84 L (10-2) |
13 |
Screaming Goat Battering Rams 136.9 - 84.5 W (9-4) |
[Random UTF characters resembling an EQ] 135.20 - 72.52 W (9-4) |
Dem Arby's Boyz 97.62 - 63.52 W (11-2) |
P-1 |
Bye 99.2 |
Bye 129.30 |
Bye 94.12 |
P-2 |
Screaming Goat Battering Rams 112.0 - 125.4 L |
Ma ma ma my Corona 127.42 - 104.46 W |
G's Unit 118.56 - 142.52 L |
P-3 |
Britons Longbowmen 86.4 - 125.8 L (4th) |
Forget the Titans 114.84 - 115.72 L (2nd) |
TeamNeverSkipLegDay 78.62 - 94.44 L (4th) |
When you read a comment that mentions The Library, you know the first reply will be "Fuck the Library". |
◄ |
2020.12.25
Staying warm by the fireFixing the transformer on a 1970s furnace, PUBG meme strats, and thinking about autoencoders. |
2021.01.03
SwellShots from a few San Diego spots during the recent swell. |
► |
2020.12.12
On lockThe covid surge is a good time for video games and fantasy football. |
2020.11.29
ModsTweaking the TensorFlow implementation of Neural Style Transfer. |
2020.12.06
Edges and cornersTaking the 500mm out for some surf shots. Tweaking neural style transfer. |
clemenswinter.com
Machine Learning and the Future of Video Games | Clemens' BlogThe rapid progress in deep reinforcement learning (RL) over the last few years holds the promise of fixing the shortcomings of computer opponents in video games and of unlocking entirely new regions in game design space. However, the exorbitant engineering effort and hardware investments required to train neural networks that master complex real-time strategy games... |
kavita-ganesan.com
A Gentle Introduction to Deep Neural Networks with Python - Kavita Ganesan, PhDThis article examines the parts that make up neural networks and deep neural networks, as well as the fundamental different types of models (e.g. regression), their constituent parts (and how they contribute to model accuracy), and which tasks they are designed to learn. |
pyimagesearch.com
Keras and Convolutional Neural Networks (CNNs) - PyImageSearchThis gentle guide will show you how to implement, train, and evaluate your first Convolutional Neural Network (CNN) with Keras and deep learning. |